Multi-instance Learning with Discriminative Bag Mapping

نویسندگان

  • Jia Wu
  • Shirui Pan
  • Xingquan Zhu
  • Chengqi Zhang
  • Xindong Wu
چکیده

Multi-instance learning (MIL) is a useful tool for tackling labeling ambiguity in learning because it allows a bag of instances to share one label. Bag mapping transforms a bag into a single instance in a new space via instance selection and has drawn significant attention recently. To date, most existing work is based on the original space, using all instances for bag mapping, and the selected instances are not directly tied to an MIL objective. As a result, guaranteeing the distinguishing capacity of the selected instances in the new bag mapping space is difficult. In this paper, we propose a discriminative mapping approach for multi-instance learning (MILDM) that aims to identify the best instances to directly distinguish bags in the new mapping space. Accordingly, each instance bag can be mapped using the selected instances to a new feature space, and hence any generic learning algorithm, such as an instance-based learning algorithm, can be used to derive learning models for multi-instance classification. Experiments and comparisons on eight different types of real-world learning tasks (including 14 data sets) demonstrate that MILDM outperforms the state-of-the-art bag mapping multi-instance learning approaches. Results also confirm that MILDM achieves balanced performance between runtime efficiency and classification effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery of Shifting Patterns in Sequence Classification

In this paper, we investigate the multi-variate sequence classification problem from a multi-instance learning perspective. Real-world sequential data commonly show discriminative patterns only at specific time periods. For instance, we can identify a cropland during its growing season, but it looks similar to a barren land after harvest or before planting. Besides, even within the same class, ...

متن کامل

FAMER: Making Multi-Instance Learning Better and Faster

Kernel method is a powerful tool in multi-instance learning. However, many typical kernel methods for multi-instance learning ignore the correspondence information of instances between two bags or co-occurrence information, and result in poor performance. Additionally, most current multiinstance kernels unreasonably assign all instances in each bag an equal weight, which neglects the significan...

متن کامل

Multiple-instance discriminant analysis

Multiple-instance discriminant analysis (MIDA) is proposed to cope with the feature extraction problem in multiple-instance learning. Similar to MidLABS, MIDA is also derived from linear discriminant analysis (LDA), and both algorithms can be treated as multiple-instance extensions of LDA. Different from MidLABS which learns from the bag level, MIDA is designed from the instance level. MIDA con...

متن کامل

Improving Image Categorization by Using Multiple Instance Learning with Spatial Relation

Image categorization is a challenging problem when a label is provided for the entire training image only instead of the object region. To eliminate labeling ambiguity, image categorization and object localization should be performed simultaneously. Discriminative Multiple Instance Learning (MIL) can be used for this task by regarding each image as a bag and sub-windows in the image as instance...

متن کامل

Multi-Instance Learning with Distribution Change

Multi-instance learning deals with tasks where each example is a bag of instances, and the bag labels of training data are known whereas instance labels are unknown. Most previous studies on multi-instance learning assumed that the training and testing data are from the same distribution; however, this assumption is often violated in real tasks. In this paper, we present possibly the first stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017